没水フィンに作用する波浪中流体力と周辺流体の速度場に 関する研究

小田純子^{*1}, 永田修一^{*1}, 今井康貴^{*1}, 豊田和隆^{*1}, 松永成正^{*1}, 久池井 智成^{*2}

An experimental study of hydrodynamic forces acting on a submerged fin and induced velocity field.

Junko Oda^{*1}, Shuichi Nagata^{*1}, Kazutaka Toyota^{*1}, Yasutaka Imai^{*1}, Narimasa Matsunaga^{*1}, Tomoaki Kuchii^{*2}

*¹ Institute of Ocean Energy, Saga University
^{*2} Faculty of Science and Engineering, Saga University

To operate a floating structure under heavy environmental condition in sea safely, motions of the floating body and the mooring forces acting the floating body have to be reduced. To reduce these motions and mooing forces, a fin attached structure has been proposed.

In this paper, three plates and a NACA0015 wing were used as a fin. As a first step, the hydrodynamic force coefficients of the fin are measured in two-dimensional tank experimentally. The influences by vortices in experimental coefficients were investigated as compared with the calculated result based on potential theory. And flow around an oscillating fin is visualized to investigate the vortex shedding in a tank. The flow field induced by the vortex is visualized and analyzed by particle image velocimetry (PIV). From PIV visualization of flow field, especially for the wing, a high-speed flow occurs along the beneath of a trailing edge when downward movement starts. And the tip vortex is not only conveyed in the lateral direction due to the image vortex but also away from due to the secondary vortex generated through a vortex-surface interaction. Finally, the relation between the hydrodynamic force acting on a fin and the flow velocity field became clear.

1. 緒 言

近年の国連海洋法条約に基づく排他的経済水域の 定着化と,我が国周辺海域での水産・鉱物・資源等の 適切な保全・管理及び持続的な利用の重要性の増大か ら,我が国の第3期科学技術基本計画(平成18年~ 平成22年)では、"海洋空間活用の基盤となる浮体技 術の確立が急務で,洋上浮体の研究開発に集中的に取 り組む必要がある"と述べている.洋上浮体は、洋上風 力発電,海洋温度差・波力等の海洋エネルギー利用, メタンハイドレート生産等広範な対象に利用される^り.

このような浮体構造物を,我が国周辺の厳しい気 象・海象条件下で安全に供用するためには,大波浪下 での浮体の動揺の低減化と,定点係留の観点から波漂 流力の低減化という2つの課題の解決が必須である. この課題を同時に解決する方法として,図1に示すよ うに,フィンの①浮体の没水部に固定又は可動フィン を設置してフィンの浮体の動揺エネルギーを渦 のエネルギーに変換する(浮体動揺低減化). ②翼型 フィンに発生する揚力を利用して、浮体を、波 の入射方向へ推進させる(波食い推進による波漂流力 低減化).という効果を利用する方法が考えられ る. この方法を実用化するためには、浮体の運動に及ぼす フィンの影響を実験的に正確に把握すると共に、上記 の課題を解決するフィンの最適形状と最適配置を求め る計算手法の開発が必要となる.

船体や浮体とフィンの相互干渉に関する従来の研 究に関しては、一色他²⁾が、前進速度のある船に設置 したフィンの効果について、実験的、理論的研究を行 い、波の入射方向に向かって船が進むという波食い推 進効果を明らかにしている.一方、前進速度が無い波 浪中の浮体運動に及ぼすフィンの効果については、寺 尾³⁾、村上等⁴⁾が実験的な研究を行っている.

Fig.1 Floating body with fin

しかしながら、フィン周りの流場の計測は行われて おらず、フィンに働く流体力と流場の関係は明確でな く、波浪中の没水フィンの性能評価のための実験デー タの蓄積が必要である.

そこで、本研究では、浮体にフィンを設置すること によって、浮体の動揺低減化と波漂流力低減化を同時 に行う方法の実用化を目的に、その1st ステップの研 究として、水面近傍に没水した水平平板と翼を鉛直方 向に強制動揺させたときの平板及び翼に働く流体力と 周辺流速場を計測し、流体力と流場の関係を調べた.

2. 水槽実験

鉛直方向に強制加振される没水フィンに働く流体 カおよび周辺流場を水槽実験により求めた.実験には 佐賀大学海洋エネルギー研究センター伊万里サテライ トの二次元水槽を使用した.実験装置の配置を図2に 示す.水槽は長さ19.5m,幅0.8mである.水深は1.0m とし端部を除き側面は強化ガラスになっており,流れ の可視化実験が可能である.

実験条件を Table 1 に示す. 模型は弦長の異なる3種類の平板ならびに NACA0015 翼を使用した.

	平板1	平板 2	平 板	NACA0015翼
			3	
弦長 L(cm)	15	17.5	20	20
幅 B(cm)	79			79
厚さ(cm)	1			NACA0015
深度 d(cm)	20			20,15
運動振幅		1 5		15
ζ(cm)		1.5		1.5

Table.1 Experimental condition

これら模型を振幅 15mm,周期 0.8~2.0 秒で強制上下 揺させ、日計電測株式会社製 Y85 検力計を用いて反力 を計測した.得られた反力を FFT 解析することにより 付加質量係数および造波ダンピング係数を算出した. ダンピングについては、平板の上下速度の2乗に比例 する係数として求めるのが通例であるが、今回は、試 みに速度の1乗に比例する係数として求めた.

また、図 2 に示すように、PIV(particle image velocimetry)画像処理法を用いてフィン周りの流場を計 測した.没水模型の斜上から 2.5W Nd:YAG レーザー (532nm,カトウ光研製)を照射し、高速カメラ HAS-500を用いて模型周囲に浮遊するマーカーを撮影、 画像キャプチャーボード GLINK により、パソコンにデ ータを取り込んだ.カメラの解像度は1024 ピクセル× 992 ピクセル(視野範囲は 438.7~470.1mm×425.0~ 456.1mm)、取り込み周波数は100Hz である.トレーサ 粒子は水との比重差が少なく、流れの変動によく追従 する粒径 52 µm 以下の不定形ナイロンパウダーを使用 した.

撮影した画像はPIV ソフトウェア(ディテクト社製 Dipp-Flow, ver 1.21)を用いて解析し、模型周囲の流場 を算出した.検査領域は 32 ピクセル×32 ピクセルに とり、分解能は縦横とも 13.3~14.3mm である.検査領 域と参照領域の相関アルゴリズムを用いて流速場を求 めた.

実験結果と考察

3・1 平板の弦長影響 図 3 は、設置深度を 200mm 一定にし、強制上下揺における流体力係数に 及ぼす平板長影響を示す.平板長が長いほど付加質量 係数、造波減衰係数が大きい.これは物体形状が同じ であれば、寸法が大きいほど付加質量および造波減衰 が大きくなることを意味し、物理的に妥当と思われる.

3・2 平板没水深度影響 図4は、平板長を一 定(L=200mm)とし、没水深度が付加質量係数およ び造波減衰係数に及ぼす影響を示す.付加質量係数は 動揺周期に関わらず深度影響が現れないが、造波減衰 係数は浅い場合の方が大きい.これは設置深度が浅い 方がより大きな造波減衰を生む物理解釈に合致する.

Fig.2 Schematic illustration of a experimental setup

Fig.3 Effect of plate's width on hydrodynamic force coefficient(Submerged depth:200mm) Left : Added mass coefficient, right : damping coefficient

Effect of submerged depth on hydrodynamic force coefficient(plate's width :200mm) Fig.4 left : Added mass coefficient, right : Damping coefficient

Fig.8 Hydrodynamic force coefficient on NACA0015 foil(Chord length: 200mm, Submerged depth: 200mm)

3・3 ポテンシャル計算結果との比較 造渦 減衰影響を見るため、実験による流体力係数と速度ポ テンシャル理論に基づく数値計算によって得られた流 体力係数を比較した.平板をダブレット分布として計 算した数値計算は三次元であるため、二次元に近づけ るようアスペクト比を 40 倍にとった.図5,図6 に比 較結果を示す.付加質量係数は実験と計算でほぼ一致 しているが、造波減衰係数では実験値が計算値を大き く上回る.この差は、造渦による減衰効果と考えられ る.

3・4 翼没水深度影響 NACA0015 翼型を迎角 ゼロで上下揺させ求めた流体力係数を,図.7,図.8 に 示す.平板同様,アスペクト比40の場合について,速 度ポテンシャルに基づく数値計算を行った.付加質量 係数は実験結果と数値計算結果がよく合致するが,造 波減衰係数は造渦影響によって差が出たものと考えら れる.

3・5 平板周囲の流場 強制上下揺する平板周 囲に発生する渦を調べるため、PIV 法により流場を計 測した.周期 1.5 秒,上下揺振幅 15mm の場合の平板 上下変位および反力を図9に示す.図9に示す1周期 をA~Hまで8分割した点における流場を図10に示す. さらに、平板周りの流線を図11に示す.平板を上下揺 させる場合、形状から明らかな通り左右両端に対称な 流れが発生する.図10を見ると、t=0からの平板上昇 に伴い平板上の流れが上方に加速されていき、同時に

Fig.12 Vertical displacement of foil and reaction force acting on foil

左右両端に平板下に回り込む形で渦が発生する.平板 が下降する場合には、逆に渦が発生する.図11は、平 板下降時における流線を示す.平板左右端に発生する 渦形成の進展が分かる.

Fig.10 Velocity vectors around the plate forced vertically (plate's width: 200mm, submerged depth: 200mm)

t=13T/15

t=15T/15

Fig.11 Streamline around the plate (T=1.5sec, plate's width: 200mm, submerged depth: 200mm)

3・6 NACA0015 **翼周囲の流場** 平板と同様に, 周期 T=1.5 秒,振幅 15mm で NACA0015 翼を上下揺さ せた場合における翼周りの流場を計測した.図12 に, 翼の上下変位および反力を示す.図12 中の A~H にお ける流場を図13 に,さらに t=0 から 3T/15 までの流線 を図14 に示す.翼は平板と違い,左右非対称であるた め,発生する渦の形が異なる.翼が上昇する t=0~3T/8 において後縁下側に強い渦が形成される.最大流速は 下降を開始する t=4T/8 において後縁下側に沿うように 発生する.渦が急速に後縁から離れていると考えられ る.

Fig.12 Vertical displacement of foil and reaction force acting on foil

Fig.13 Velocity vectors around the foil forced vertically (Chord length: 200mm, Submerged depth: 200mm)

t = T/15

Fig. 14 Streamline around the NACA0015 foil (T=1.5sec, plate's width: 200mm, submerged depth: 200mm)

図14は翼がt=0からの上昇に伴い形成される流線で ある. 上昇中,後縁部の下に高速の流れが集中してい る様子が分かる.また、前縁の上下においても小規模 の渦が発生している様子が分かる.

4. まとめ

本研究では、洋上に設置された浮体構造物の動 揺と波漂流力の低減させる方法として、浮体構造 物にフィンを設置する方法を考え、1stステップと して, 浮体構造物に取り付けるフィン単体の流体 力特性ならびに周囲流場特性について研究を行っ た.フィンとして平板と翼を考え,二次元水槽実 験で,水平に設置したフィン模型を上下方向に強 制加振させた時のフィンに作用する流体力を計測 した. 水槽実験により求められた流体力係数を速 度ポテンシャルに基づく計算結果と比較し、造渦 による影響を調べた.また PIV 法により強制上下 揺する平板およびNACA0015 翼まわりの流速場な らびに流線を求めた.その結果,平板や翼に働く 流体力と流速場の関係が明らかになった.流場計 測からは、特に翼の場合、下降開始する際に後縁 下に沿って高速の流れが発生することが確認され た.

文 献

- マリンフロート推進機構偏:大規模浮体構造物, (1) 鹿島出版会,2000
- (2)Isshiki,H and Murakami,M:A Theory of Wave Devouring Propulsion (3rd Report), J.Soc. Naval Arch.Japan,

(1)No.154,pp118-128

- (3)寺尾裕,波に向かって進む浮体,関西造船協会誌, 第 184 号, pp.51-54,1982
- (4) 村上光功他:停止時における船舶の動揺制止装置 の開発,日立造船技報,第52巻,第2号, pp.145-154,1991