海水中におけるゼオライトのイオン交換に関する基礎的実験

和嶋隆昌*1,志水倫恵*1,岡本光*1,池上康之*1

A Study on Ion Exchange of Zeolite in Seawater

Takaaki WAJIMA^{*1}, Tomoe SHIMIZU^{*1}, Hikaru OKAMOTO^{*1}, and Yasuyuki IKEGAMI^{*1}

*¹ Saga Univ., Inst. of Ocean Energy

1-48, Kubara, Yamashiro-cho, Imari, Saga, 849-4256 Japan

Our study investigated ion exchange of zeolite in seawater to adjust the chemical composition of seawater. The order of cation exchange capacities for K^+ , NH_4^+ , and Ca^{2+} is Na-A > Na-X > natural zeolite, but that for Mg^{2+} is Na-X >> Na-A > natural zeolite. Ion exchange of Na-A for K^+ , Ca^{2+} , and Sr^{2+} in seawater is almost same as that of Na-X, but the ion exchange of Na-X for Mg^{2+} in seawater is superior to that of Na-A. The ion exchange of zeolite K-A and Ca-A in seawater can supply K^+ and Ca^{2+} to seawater, respectively. These results can suggest that the chemical composition of seawater can be adjusted by the ion exchange of zeolite.

Key Words: Ion Exchange, Seawater, Natural zeolite, Synthetic zeolite, Water Purification

1. 緒 言

21世紀に入り,資源の枯渇,地球環境問題が深刻 な課題となっている.その中で,海洋は人類にとって 未開のフロンティアであり,海洋国日本において,海 洋における新たなエネルギー・資源開発は重要な課題 となっている.海洋温度差発電は,再生可能なクリー ンエネルギーであり,汲み上げた表層海水の淡水化, 深層水の放流による海洋肥沃化,海水からのリチウム 回収など,エネルギー・水・食料・鉱物資源を供給可 能な複合システムとして注目されている⁽¹⁾.これらの 利用を含め,多くの海水利用では,海水成分の影響を 受けるため,海水の組成や濃度の調整が重要である.

ゼオライトは,結晶性含水アルミノケイ酸塩の一 種であり,自然界において火山灰が熱水変成作用をう けることで生成し,火山国日本に豊富に存在する資源 である⁽²⁾.多孔質で比表面積が大きく,構造中に負電 荷を持つため,陽イオン交換能,吸着能,触媒能をも つ機能性物質であり,その機能を模倣し人工的な合成 も行われている⁽³⁾.また,近年,石炭灰,製紙スラッ ジ焼却灰,廃磁器屑,砕石屑などの産業廃棄物をゼオ ライトに転換する技術・開発も行われており⁽⁹⁻⁽¹⁰⁾,そ の機能を生かした河川や湖沼の水質浄化材,土壌改良 や脱臭剤としての利用も研究されている(11)-(13).

ゼオライトは,陽イオン交換能をもつため,硬水 の軟水化などに利用されてきた.同様に海水中の陽イ オンとゼオライト中の交換性陽イオンのイオン交換に より海水の組成の調整が可能であり,様々な用途への 利用が期待される.しかしながら,ゼオライトの海水 中でのイオン交換挙動は明確にされていない.

本研究では,安価な天然ゼオライトおよび代表的 な合成ゼオライトである 3A, 4A, 5A, 13X を用いて,海 水中の陽イオン交換挙動ついて基礎的な検討を行った ので,その結果を報告する.

2. 試料及び実験方法

2・1 試料 本実験では,市販の飯坂産モルデナ イト型天然ゼオライト試料(日東)と合成ゼオライト 3A,4A,5Aおよび13X(Wako)を用いた.試料は, 乳鉢で粉砕し,粒径500µm以下に分級した後,乾燥 機で十分に乾燥させて用いた.市販のゼオライトは, 和嶋ら^{(10,(14)}が用いた飯坂産モルデナイト型天然ゼオラ イトと同一のものであり,国内の天然ゼオライトでは 高い陽イオン交換容量(CEC)を持つ試料である.以 後,各試料は,天然ゼオライト:NZ,3A:K-A,4A:Na-A,5A:Ca-A,および,13X:Na-Xと略記する.

海水には,伊万里湾表層より採水したものを用いた. 海水の化学組成をTable 1 に示す.一般的な海水と同様

^{*}原稿受付 2007年02月28日

^{*1}佐賀大学海洋エネルギー研究センター

^{(〒849-4256} 佐賀県伊万里市山代町久原字平尾 1-48) E-mail: wajima@ioes.saga-u.ac.jp

の組成であり, pHも 8.1 と同様であった.なお,海水 中のK⁺, Mg²⁺, Ca²⁺, Cf, Br, SO₄²はイオンクロマト グラフ(DX-120, Dionex)で, Na⁺, Sr²⁺は, ICP - AES (ICPS-7500, Shimadzu)で測定した.

Table 1 Chemical composition of seawater.	
Concentration, mg/L	
Na ⁺	10753
\mathbf{K}^{+}	383
Mg^{2+}	1280
Ca ²⁺	377
\mathbf{Sr}^{2+}	7.1
Cľ	19409
Br	57
SO ₄ ²⁻	2139

2・2 陽イオン交換能 海水中の主要陽イオンで あるK⁺, Mg²⁺, Ca²⁺のNZ, Na-A, Na-Xとの陽イオン交換 能を調べた.また,比較としてNH4の陽イオン交換能 も調べた.1MKCl, 0.5MMgCl₂, 0.5MCaCl₂, 1MNH₄Cl 溶液を用い,イオン交換を次のように行った.なお, 溶液作成に用いた試薬は,塩化ナトリウム(特級試薬, Wako),塩化カリウム(特級試薬,Wako),塩化リチ ウム(特級試薬,関東化学),塩化マグネシウム六水 和物(特級試薬, Wako), 塩化カルシウム二水和物 (特級試薬, Wako) である. ゼオライト試料1gと溶液 40 mLを遠沈管に入れ,振盪器で1時間,200 minで振 盪した.その後,遠心分離(3300 ppm, 10 min)を行い,上 澄み液を取り去った後,新たに溶液 40 mLを加え再び 振盪器で1時間振盪した.この溶液の入れ替え操作を 0-8回行い,それぞれの操作回数で試料を得た.得ら れた試料は,洗浄操作として,80%エタノール溶液40 mLによる 1 時間の振盪を 2 回行い, 60 ℃の乾燥機中 で一日乾燥し,陽イオン置換型ゼオライト試料を調整 した. 各試料の陽イオン交換能は, K⁺, Mg²⁺, Ca²⁺は 1M NH⁴CI溶液中で, NH⁺は 1M KCI溶液で抽出し, 陽 イオン交換容量として測定した.各試料0.1 gを 10 mL の抽出液に添加し,1時間振盪し遠心分離することで 上澄み液中に交換性陽イオンを抽出した.この操作を 5回繰り返し,陽イオン交換容量を計測した.なお, Mg²⁺, Ca²⁺は価数をかけてイオン当量で陽イオン交換 容量を計算した.抽出液中のK⁺, Mg²⁺, Ca²⁺はICP-AESで,NH4はチモールブルー法で測定した.

2・3 **N型ゼオライトによる海水中陽イオンのイオン 交換** 海水中におけるNa-A, Na-X中のNa⁺とK⁺, Mg²⁺, Ca²⁺, Sr²⁺とのイオン交換を調べた.ゼオライト 試料 15 gと海水 150 mLを 200 mLビーカーに入れ, マグ ネチックスターラーで1時間攪拌した.その後,濾過 し,濾液に新たにゼオライト試料 15 gを加え,再び1 時間攪拌した.この操作を6回行い,それぞれの操作 回数で濾液の一部を採取した.採取した濾液中のK⁺, Mg²⁺, Ca²⁺はイオンクロマトグラフで, Na⁺, Sr²⁺は, ICP-AESで測定した.

2・4 **陽イオン種の異なるゼオライトによる海水中陽** イオンのイオン交換 海水中におけるK-A, Na-A, Ca-Aの陽イオン(K⁺, Na⁺, Ca²⁺)とNa⁺, K⁺, Mg²⁺, Ca²⁺, Sr²⁺のイオン交換を調べた.ゼオライト試料15gと海水 150 mLを 200 mLビーカーに入れ,マグネチックスター ラーで1時間攪拌した.その後,濾過し,濾液に新た にゼオライト試料15 gを加え,再び1時間攪拌した. この操作を 10 回行い,それぞれの操作回数で濾液の 一部を採取した.採取した濾液中のK⁺, Mg²⁺, Ca²⁺は イオンクロマトグラフで, Na⁺, Sr²⁺は, ICP - AESで測 定した.

3. 実験結果及び考察

Fig. 1 JENZ , Na-A , Na-X 3・1 陽イオン交換能 の各陽イオンに対する陽イオン交換容量を示す.陽イ オン交換容量は,K⁺,Ca²⁺,NH⁺では,Na-A > Na-X > NZ, Mg^{2+} では, Na X > Na A > NZの順に高かった. NZは天然物であるため不純物が多く,全体的に低い交換 容量を示すと考えられる . K⁺ , Ca²⁺ , NH₄⁺とMg²⁺で陽 イオン交換容量の優劣が異なるのは,合成ゼオライト の細孔径はNa-A: 4 Å, Na-X: 9 Åであり⁽¹⁵⁾, Mg²⁺は水和半 径が大きい(ストークス半径:3.5Å)ため⁽¹⁶⁾,大きな 孔を持つNa-Xに入りやすいためと考えられる.陽イオ ン交換性の高さは、NZ:K⁺>NH⁺>Ca²⁺>Mg²⁺,Na-A:K⁺= Ca²⁺>NH₄⁺>Mg²⁺, Na-X: K⁺>Mg²⁺=Ca²⁺=NH₄⁺であり, K⁺ が最もイオン交換しやすい. そのため, 溶液中のK⁺と Na⁺のイオン交換はNa型ゼオライトを用いて容易に行 えると考えられる.一方,溶液中のMg2+をNa+とイオ ン交換する場合は、NZやNa-AよりもNa-Xを用いるこ とが好ましいと考えられる.

以上のことより, Na型ゼオライトの K⁺, Mg^{2+} , Ca^{2+} , NH4⁺に対するイオン交換能は, 天然ゼオライト より合成ゼオライトが高いことがわかった.また, K⁺, Ca^{2+} , NH4⁺に対してはNa-Aが高い陽イオン交換能を持 つが, Mg^{2+} に対してはNa-Xが他に比べて特に高い陽イ オン交換能をもつことがわかった.

3・2 海水中での陽イオン交換の選択性 Fig. 2 に、Na-A、Na-Xにより数回処理した海水中のNa⁺、K⁺、 Mg²⁺、Ca²⁺、Sr²⁺の濃度変化を示す、Na-AよりNa-Xで処 理した方が、Na⁺は大きく増加しており、K⁺、Mg²⁺、 Ca²⁺、Sr²⁺は早く減少している、特に、Mg²⁺においては 顕著な差が見られた、前節で述べたように、Na-Xは Na-Aと比べ、Mg²⁺とのイオン交換量が他の陽イオンに 比べ特に大きいため、Mg²⁺の減少に顕著な差が見られ ると考えられる.また, Na⁺の増加量の差は, Na-X中のNa⁺と海水中のMg²⁺との陽イオン交換によると考えられる.

これらのことより,海水中のK⁺, Ca²⁺, S²⁺の組成 調整にはNa-A, Na-Xでほぼ同様の減少傾向を示すが, Mg²⁺では, Na-XがNa-Aに比べ大きく減少し, Mg²⁺を選 択的に調整できると考えられる.

3・3 ゼオライト中の陽イオン種の影響 Fig. 3 に、K-A、Na-A、Ca-Aにより数回処理した海水中のNa⁺、 K⁺、Mg²⁺、Ca²⁺、Sr²⁺の濃度変化を示す、Na-AでNa⁺濃度 が上昇するように、K-AではK⁺濃度が、Ca-AではCa²⁺ 濃度が上昇し、Na⁺濃度はNa - Aに比べて減少した. Mg²⁺では、K-A、Na-AがCa-Aに比べ早く減少し、Sr²⁺も 同様に減少した、海水中ではMg²⁺、Sr²⁺と

Fig. 2 Concentrations of (a) Na^+ , (b) K^+ , (c) Mg^{2+} , (d) Ca^{2+} , (e) Sr^{2+} in seawater treated with Na-X and Na-A.

Fig. 3 Concentrations of (a) Na^+ , (b) K^+ , (c) Mg^{2+} , (d) Ca^{2+} , (e) Sr^{2+} in seawater treated with K-A, Na-A, and Ca-A.

一価の陽イオンがイオン交換しやすいと考えられる. Na⁺におけるNaA,K⁺におけるK-A,Ca²⁺におけるCaA において,イオン交換が進むにつれて濃度が減少する 傾向がある.この現象については現在検討中であるが, pHによる成分の変化が考えられる.Table 2 に海水処理 後の溶液のpHを示す.Ca-A以外はpH 10 以上の強アル カリ性になっている.今後,pHとイオン交換につい て更なる検討を行う予定である.

Talbe 2 pH of the solution after zeolite treatment.

	pН
K-A	11.4
Na-A	10.1
Ca-A	8.1
Na-X	10.2

4. 結 語

本研究では,海水中におけるゼオライトのイオン交換に関する検討を行った.その結果,海水中の主成分であるK⁺,Mg²⁺,Ca²⁺に対し,天然ゼオライトに比べ,合成ゼオライトのイオン交換能が高いことがわかった. また,Mg²⁺に対してはNa-Xが特異的なイオン交換能を持ち,海水中でもNa-Aに比べ顕著なイオン交換による減少が見受けられた.ゼオライト中の陽イオン種をK⁺,Ca²⁺に変えることで,Na⁺とのイオン交換により海水中にK⁺,Ca²⁺を供給できることがわかった.

これらの知見より, ゼオライトの種類やゼオライト 中の陽イオンを適切に選定することで, ゼオライトに よるイオン交換処理による海水中の成分調整が可能と 考えられる.今後, 調整法を更に検討し, 海水からの 製塩技術や農業用水の作成技術に応用する予定である.

謝辞

本研究は,21 世紀 COE プログラムによって支援されており,ここに謝意を表す.

参考文献

- (1) 池上康之,新しい海洋温度差発電の現状と展望, エコインダストリー,10,(2005), p.7-16.
- (2) 日本学術振興会鉱物新活用第 111 委員会, 天然ゼ オライトの特性と利用, (1994)

- (3) Barrer, R. M., Zeolite and clay minerals as sorbents and molecular sieves, Academic Press, London (1978).
- (4) Queroa, X., Moreno, N., Umana, J. C., Alastuey, A., Hemandez, E., Lopez-Solar, A., and, Plana, F., Synthesis of zeolites from coal fly ash: an overview, *International Journal of Coal Geology*, 50, (2002), p.413-423.
- (5) Wajima, T. , Kuzawa, K., Ishimoto, H., Tamada, O., and Nishiyama, T., The synthesis of zeolite-P, Linde Type A, and hydroxysodalite zeolites from paper sludge ash at low temperature (80 °C): optimal ash-leaching condition for zeolite synthesis, *American Mineralogist*, 89, (2004), p. 1694-1700.
- (6) Wajima, T., Haga, M., Kuzawa, K., Ishimoto, H., Tamada, O., Ito, K., Nishiyama, T., Downs, R. T., and Rakovan, J. F., Zeolite synthesis from paper sludge ash at low temperature (90 °C) with addition of diatomite, *Journal of Hazardous Materials*, B132 (2006), p.244-252.
- (7) 和嶋隆昌,池上康之,アルカリ溶液を用いた廃磁 器屑からの機能性物質ゼオライトの合成,OTEC, 10(2004),p.47-52.
- (8) Wajima, T., and Ikegami, Y., Zeolitic adsorbent synthesized from powdered waste porcelain, and its capacity for heavy metal removal, *Ars Separatoria Acta*, 4 (2006), p. 86-95.
- (9) Wajima, T., and Ikegami, Y., Synthesis of zeolitic materials from waste porcelain at low temperature via a two-step alkali conversion, *Ceramics International*, In Press.
- (10) 和嶋隆昌,吉塚和治,池上康之,砂岩砕石屑の有 効利用を目的としたゼオライトへの転換法の開発, 応用地質,47(2006),p.292-296.
- (11) 岡本真琴,佐藤雄星,坂本栄治,天然ゼオライト 岩における水質浄化能の比較, ゼオライト,20
 (2003), p.55-65
- (12) Rožić, M., Cerjan-Stefanović, Š., Kurajika, S., Vanćina, V., and Hodžić, E., Ammonical nitrogen removal from waste water by treatment with clays and zeolites, *Water Research*, 34 (2000), p. 3675-3681
- (13) Sarioglu, M., Removal of ammonium from municipal wastewater using natural Turkish (Dogantepe) zeolite, *Separation* and *Purification Technology*, 41, (2005), p. 1-11
- (14) 和嶋隆昌,池上康之,天然ゼオライトを用いたアンモニア除去に関する基礎的実験,OIEC,10(2004), p.53-58.
- (15) 清水博, 吸着技術ハンドブック, NTS, (1993).
- (16) 大瀧仁志, イオンの水和, 共立出版, (1990).