アンモニア/水液のプール沸騰熱伝達率の予測式の提案

Correlation of Heat Transfer Coefficient during Pool Boiling in Ammonia/Water Mixtures

井上 利明, 門出 政則

Toshiaki INOUE^{*1}, Masanori MONDE^{*2} ^{*1}Dept. of Mech. Eng., Kurume Inst. Tech., 2228 Kamitsu, Kurume, Fukuoka 830- 0052 ^{*2} Dept. of Mech. Eng., Saga Univ., 1 Honjo, Saga 840- 8502

A correlation of pool boiling heat transfer coefficient in Ammonia/Water Mixtures was proposed on the basis of heat transfer data measured. The correlation was derived using both fraction difference between vapor and liquid, y_1 - x_1 , and temperature difference between dew and bubble point, ΔT_E . It can predict the heat transfer coefficients of the mixtures all over fraction range within an accuracy of ± 20 percent. It was clarified that the coefficient more strongly depends on y_1 - x_1 than on ΔT_E for the mixtures.

Key Words : Heat Transfer, Prediction, Ammonia/water mixture, Pool Boiling,

1. まえがき

inoue ら⁽¹⁾は先にアンモニア/水混合媒体のプール沸騰熱伝 達率を測定した.そして,従来の整理式⁽²⁾⁻⁽⁵⁾によってすべて の濃度域におけるアンモニア/水混合媒体の沸騰熱伝達率を 予測することは困難であることを報告した.その原因として, 従来の整理式は相平衡線図における蒸気と液の濃度差(y₁x₁)または露点と沸点の温度差(ΔT_E)のいずれか一方にの み注目して,沸騰熱伝達の予測を試みているためと考えられ る.例えば文献(2)-(4)は y₁- x₁を導入しており, Thome⁽⁶⁾, Thome and Shakir⁽⁷⁾, Fujita and Tsutsui⁽⁸⁾および Inoue ら⁽⁵⁾は Δ T_Eを考慮に入れた一般予測式を提案している.

井上ら⁽⁹⁾は文献(1)の発表後,熱伝達測定実験装置を改良

して混合熱(希釈熱および溶解熱)の効率的な冷却方法を提 案した.この改良によって熱伝達の測定誤差が改善され,さ らに熱伝達データが蓄積されてきた.

本研究では、これらの蓄積された熱伝達データを用いて、 y_1 - x_1 および ΔT_E の両方に注目して、アンモニア/水混合媒体のプール沸騰熱伝達率をすべての濃度域で精度よく予測できる整理式を導出したものである.

2. 従来の整理式

従来の整理式の大部分は式中に混合媒体の物性値および 実験定数を含んでいる.しかし、アンモニア/水混合媒体の 物性値が不明であるので,それらの整理式を適用することが

Fig.1 Comparison between existing correlations and experimental data $\bigcirc q = 400 \text{ kW/m}^2$, $\triangle q = 700 \text{ kW/m}^2$, $\bigcirc q = 1500 \text{ kW/m}^2$, $\bigcirc q = 1500 \text{ kW/m}^2$

困難である.そこで、相平衡データ(例えば ΔT_{E} , y₁-x₁)と予 測可能な状態量(例えば蒸発潜熱 H_{fg},密度 ρ)を用いて予測 できる整理式(1)-(3)(表1参照)について検討する.なお、式 (1)中の A₀の値は混合媒体の組み合わせに依存するものであ り、Stephan and Kömer⁽²⁾は18種類の混合媒体に対して A₀を 求め、0.43 \leq A₀ \leq 3.56 の範囲となることを示した。ここ ではフロン系混合媒体の実験データを最も良い精度で予測 する値 A₀=3.10を用いた.式(2)中の実験定数 B₀および D は Schlünder⁽³⁾による推奨値である.なお、熱力学的性質は Ibrahim and Klein⁽¹⁰⁾の式を用いた PROPATH⁽¹¹⁾から計算した.

図 1 は沸騰熱伝達率に及ぼすアンモニア濃度の影響について、実験データと予測式(1)-(3)を比較したものである.同時に y_1 - x_1 および ΔT_E を示している.図中の単成分媒体の熱伝達率は核生成因子 0.39 を用いた高熱流束域におけるNishikawa and Fujita⁽¹²⁾の予測値である. y_1 - x_1 を用いて整理された式(1)および(2)は高濃度域では比較的良好な精度で熱伝達を予測しているが、低濃度域では大きく過小評価していることが分かる。一方、 ΔT_E を主な支配因子とした式(3)は高濃度域で大きく過小評価していることが分かる。以上のことより、式(1)の予測精度が比較的良いものの、測定された沸騰熱伝達率の特性は広く推奨されている従来の予測式とかなり異なっていることが明らかになった.これは、実験データと ΔT_E および y_1 - x_1 の相関性が認められない(図1参照)にもかかわらず、式(1)-(3)は ΔT_E または y_1 - x_1 と密接に関連して

いるからである。もう一つの要因は図 2 に示すように、アン モニア/水の場合、従来の 2 成分系と比較して ΔT_E および y_1 x_1 がきわめて大きいためである.

整理式の改善

アンモニア/水混合媒体の沸騰熱伝達が $\Delta T_E \ge y_1 - x_1$ の両 方に支配されるとすれば、従来の整理式を用いて式(4)および (5)が考えられる.この考えに立って実験データに基づく整理 を行った.

$$\frac{h}{h_{id}} = \frac{1}{1 + K_i \frac{k\Delta T_E}{\Delta T_{id}} + K_{St} A_0 (y_1 - x_1) [0.88 + 0.12P(bar)]}$$
(4)

$$K_i = 0.15, K_{St} = 0.65$$

$$\frac{h}{h_{id}} = \frac{1}{\left\{ K_i k\Delta T_E + K_{Sh} (y_1 - x_1) \left[1 - \exp\left(-\frac{B_0 q}{D_0 - M_1}\right) \right] (T_{S2} - T_{S1}) \right\}}$$
(5)

 ΔT_{ii}

 $K_i = 0.15$, $K_{sh} = 0.25$

式(4)は式(1)と(3)の組み合わせ、式(5)は式(2)と(3)を組み合わせることによって導出したものである.式(4)および(5)中のK_{St},K_{Sh}およびK_i,は式(1),(2)および(3)の補正係数であり,実験データとの平均誤差が最小になるように決定した.この結果からStephan and Körner⁽²⁾の式(1)の補正(K_{St} = 0.65)がもっとも小さいことが分かる.

図3は式(4)および(5)と実験データを比較したものである. また,表2は式(4)および(5)の予測精度を統計処理したものである.両式とも良好な精度で熱伝達データを予測できることが分かる. ΔT_E を主な支配因子とする式(3)の補正係数 K_iよりも y₁- x₁を主な支配因子とする式(1)および(2)の補正係数 K_{st}と K_{sh}のほうが大きくて1に近い.このことはアンモニア/水混合媒体の沸騰熱伝達が ΔT_E よりも y₁- x₁のほうにより大きく依存していることを意味する.また,式(1)と(2)の補正が小さいことは従来のフロン系混合媒体とアンモニア/水系を比較すると,図2に示すように ΔT_E の差(約60%)よりも y₁- x₁の差(約30%)のほうが小さいことからも理解できる。

図4は式(5)および(6)の予測誤差を示す。全濃度域において全データの97%を±20%以内の精度で予測することができる。

4. 整理式のフロン系への適用

Inoue and Monde⁽¹³⁾によって測定されたフロン系混合媒体 R22/R11 の沸騰熱伝達データへの適用を試みた結果,式(4) は K_i =0.85, K_{st} =0.20,式(5)は K_i =0.96, K_{sh} =0.13の組み合わ

Table 2 Prediction accuracy of proposed correlations

	Average	Mean	Standard
	error	deviation	deviation
Eq. (4)	0.00124	0.07592	0.09323
Eq. (5)	-0.00005	0.08005	0.10084
Mean error		: $\Sigma (h_{pre} / h_{exp} - 1) / N$	

Mean deviation Σ

$$\Sigma h_{nre} / h_{exp} - 1 / N$$

Mean deviation : $\sum |h_{pre} / h_{exp} - 1| / N$ S tan dard deviation : $\sqrt{\sum (h_{pre} / h_{exp} - 1)^2 / N}$

Fig.4 Prediction error of proposed correlation $\bigcirc q=400, \triangle 700, \Box 1000, \diamondsuit 1500 \text{ kW/m}^2$

せの補正係数を得た. K_i の補正が K_{St} および K_{Sh} の補正より もかなり小さいことから,フロン系の場合は ΔT_E による支 配が大きく, y_{I} - x_1 による支配は小さいことが分かった.こ の補正による R22/R11 混合媒体の予測誤差を図 5 に示 す。図 5 から約±20 %以内の精度で R22/R11 の沸騰熱伝達デ ータを予測できることが分かる。したがって,整理式(4)およ び(5)は他の2成分混合媒体についても補正係数 $K_{i,}K_{st}$ および K_{sh} を適切に与えることによって予測可能である.なお、フ ロン系混合媒体の熱力学的性質は修正 BWR 法⁽¹⁴⁾により推算 した.また,推算のプログラムは宮良ら⁽¹⁵⁾の手法を参考にし た.

5. まとめ

アンモニア/水混合媒体の沸騰熱伝達率の予測式を提案し, 次の結果を得た.

1. 本混合媒体の沸騰熱伝達率が主に沸点と露点の温度差お よび蒸気と液の濃度差の双方に支配されるとして、予測でき る整理式を提案した.

2. 本混合媒体の沸騰熱伝達率は ΔT_E よりも y_I - x_1 のほうに, より大きく依存しており、フロン系混合媒体の場合は逆に y_I - x_1 よりも ΔT_E のほうに、より大きく依存している.

 本整理式は他の2成分混合媒体に対しても、補正係数 K_i, K_{st}および K_{sh}を適切に与えることによって予測可能である.

参考文献

Fig.5 Prediction error of R22/R11 mixtures \bigcirc q=70, \triangle 100, \square 200, \Diamond 400, \times 500, +600 kW/m²

- Inoue, T., Monde, M. and Teruya, Y., Int. J. Heat Mass Transfer 45 (2002), 4409- 4415.
- (2) Stephan, K. and Körner, M., Chemie- Ing, Techn. 41 (1969), 409- 417.
- (3) E.U. Schlünder, Int. Chem. Eng., Vol.23 (1983) 589-599.
- (4) Jungnickel, H., et al., Int. J.Refrig., 3 (1980), 129-133.
- (5) Inoue, T., Kawae, N. and Monde, M., Heat and Mass Transfer 33 (1998), 337- 344.
- (6) Thome, J. R., Int. J. Heat Mass Transfer 26 (1983), 965-974.
- (7) Thome, J. R. and Shakir, S., AIChE Symp. Ser. 83 (1987), 46-51.
- (8) Fujita, Y. and Tsutsui, M., Int. J. Heat Mass Transfer 37 (1994), Suppl. 1, 291- 302.
- (9) 井上利明・門出政則・照屋義雄, 熱工学講演会論文集, No.02-22 (2002), 437-438.
- (10) Ibrahim and Klein, ASHRAE Trans., Symposia, 99 (1993), 1495-1502.
- (11) PROPATH グループ, 流体の熱物性値プログラム・パッ ケージ PROPATH V. 11.1 (1999).
- (12) Nishikawa, K. and Fujita, Y., Advances in Heat Transfer, Vol.20 (1990), 18-23.
- (13) Inoue, T. and Monde, M., Wärme- unt Stoffübertragung 29, (1994), 171-180.
- (14) H. Nishiumi and S. Saito, J. Chem. Eng. Japan, 8(5), (1975), 356-360.
- (15) 宮良明男・清田修・上原春男, 佐賀大学理工学部付属海 洋熱エネルギー変換実験施設報告書, 第3号(1990), 9-32.